Tokamak Energy
What does Tokamak Energy do?
Tokamak Energy is working on nuclear fusion, the long-awaited holy grail of the energy field. It is the reaction that powers the sun and the stars, and fusion is terrifically hard to do. But harness this stellar reaction and clean, green, safe and abundant energy could be a reality around the world. The promise is tantalising.
Fusion now is an engineering problem. Fusion was achieved in the 1990s (in the JET tokamak at UKAEA Culham and TFTR in the US), but we need to design and build machines that can generate a net energy gain for a sustained period, and which will be economical to build, run and decommission. Tokamak Energy is bringing innovative ideas to the mainstream concept, building on solid foundations but using important new technologies to accelerate the development of fusion energy.
What are the key innovations of Tokamak Energy?
The fusion programme has been plagued by variable investment and delays, partly due to experimental fusion machines, called tokamaks, getting larger and larger. Two innovations – spherical tokamaks and high-temperature superconductors – open up the possibility of building smaller fusion machines.
Spherical tokamaks have a cored-apple shape rather than the conventional ring-doughnut shape. This change in design has been shown to improve the machine’s efficiency, but the lack of space could be problematic. High-temperature superconducting materials were discovered in the 1980s, but it is only recently that processes have been developed to form the ceramic material into a flexible tape that could be used to wind electro-magnets. Together, these innovations could revolutionise the energy field by delivering fusion smaller, cheaper and faster.
Tokamak Energy founder Alan Sykes pioneered the spherical tokamak concept in the 1980s and 90s. Now Tokamak Energy and collaborators are pioneering the development of high-temperature, superconducting magnets for tokamaks, which makes the tighter, spherical design a viable option for future power stations. With previous technology, this was seen as impossible.
Besides the new technology, the key innovative approach is our agility – keeping experimental devices as small as possible to prove our concepts before moving on. In this way we can investigate, learn and iterate quickly.
Watch how Tokamak Energy is developing nuclear fusion