Engineering news
For most of the history of music production, it’s been a very tactile process. Recording studios were full of switches, sliders, buttons and dials. Audio engineers would physically scrolls through reels of tape, and make edits by cutting them with a razor blade.
But that all changed with the advent of computers. Now, the power of a recording suite can fit into a laptop, and switches and dials have been replaced with digital menus. Instead of scrubbing through a track using reels of tape, musicians and technicians scroll through a waveform – a visual representation of the audio track showing the peaks and troughs of its volume and frequency.
But what if you can’t see? Audio production has gone from being an ideal career for someone with a visual impairment to an ergonomic nightmare. There are tools such as ‘Voiceover’ which can help deal with computer menus by reading out their contents, but these can clash with the underlying audio.
One potential solution was showcased yesterday at the Royal Academy of Engineering’s Innovation in Haptics event.
The Haptic Wave prototype - developed by researchers at Goldsmiths - consists of a wooden board with a slider built into it. As the user moves the slider from left to right to scroll through time, a dial moves up and down depending on the position of the waveform at that point in time.
The louder it gets the higher the dial, and it falls to the bottom of the slider for the quiet parts. “It’s an immediate, intuitive indication,” said Atau Tanaka, a professor of media and computing at the university, who worked on the ESPRC-funded research.
Adam Parkinson, who co-authored the research, told Professional Engineering that they had consulted with a number of visually impaired audio engineers about what kind of device they’d been looking for before developing the Haptic Wave, which is about 30cm long and 12cm tall. “Whether you’re visually impaired or not, this technology frees you up and you can take that information in through the hands,” he said. In the future, the same technology could potentially be used to show whether a vocalist is in tune.
Parkinson said the device, which is being trialled in music studios and recording facilities across the United States and England, could be useful for audio engineers, musicians, radio producers and voiceover artists
It was just one of a number of haptic technologies on show at the Royal Academy of Engineering event, which also featured a demonstration from Bristol-based start-up Ultrahaptics. Their technology uses ultrasonic waves to simulate the sensation of touch. PE tried a few demos, including one where it felt like bubbles were popping on the skin, and another where we could physically feel the sensation of pressing a switch in mid-air. Speakers also discussed the potential for haptics in areas such as surgery and healthcare, and entertainment, where it could be used to allow museum visitors to ‘feel’ objects that they’re not usually allowed to touch.